
1 Fraktali

1.1 Uvod u fraktale

Mandelbrotov skup

U prošlosti, matematika se pretežno bavila skupovima i funkcijama na koje se pre-
težno mogu primjeniti metode klasičnog diferencijalnog računa. Skupovi funkcija koje
nisu dovoljno glatke ili regularne se se pretežno ignorirali.

Posljednih decenija ovaj se način razmišljanja promijenio. Shvatilo se da se veoma
mnogo može reći o matematici na neglatkim skupovima.

Fraktalna geometrija daje generalni okvir unutar kojeg se izučavaju takvi iregu-
larni skupovi. Iako realtivno često čujemo o “fraktalima”, većina ne razumije šta oni
predstavljaju i uopće šta su.

Mnogi su pokušaji napravljeni kako bi se fraktali definisali u čisto matematičkom
smislu, ali su se takve definicije često ispostavile nezadovoljavajućim u općem kontek-
stu.

Ipak, fraktalna geometrija daje dosta tehnika za upravljanje fraktalima.

Definicija fraktala

Rečeno informalno, fraktal je grub ili fragmentiran geometrijski oblik koji se može
podijeliti u dijelove od kojih je svaki (barem približno) umanjena kopija originala.
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Ova osobina se naziva ’samo-sličnost’.

Riječ dolazi od latinskog fractus, što znači slomljen i termin je 1975. godine izmis-
lio Benoît Mandelbrot.

Matematički fraktal je zasnovan na jednačini koja prolazi kroz iteraciju.

Definicija fraktala

Fraktal obično ima slijedeće osobine:

• Ima finu strukturu do proizvoljno malih skaliranja.

• Previše je iregularan da bi bio opisan Euclidskom geometrijom.

• Samo-sličnost.

• Njegova Hausdorffova dimenzija je veća od topološke dimenzije.

• Ima jednostavnu rekurzivnu definiciju.

Definicija fraktala

Prirodni primjeri fraktala uključuju:

• Oblaci;

• Planinski lanci;

• Munje;

• Obalni pojasevi;

• Snježne pahuljice;

• Odred̄eno povrće (karfiol ili brokula)...

Historija fraktala

1872. se pojavljuje funkcija čiji se graf može smatrati fraktalom.

Karl Weierstrass daje primjer funkcije sa neintuitivnom osobinom da je svugdje
neprekidna, a nigdje diferencijabilna!
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f(x) =

∞∑
n=0

an cos(bnπx),

gdje je 0 < a < 1, b pozitivan neparan cijeli broj i

ab > 1 +
3

2
π.

Weierstrassova funkcija

Kochova pahuljica

1904. Helge von Koch, nezadovoljan Weierstrassovom definicijom, daje mnogo
više geometrijski primjer fraktala.

Kochova pahuljica

Površina Kochove pahuljice je
2s2
√

3

5

gdje je s dužina jedne stranice originalnog trougla. Dakle, Kochova pahuljica ima
beskonačnu granicu, a konačnu površinu! 1918 godine Bertrand Russell je priznao
’vrhunsku ljepotu’ unutar nastajuće matematike fraktala. Slijedeći argument daje
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relativno grubu interpretaciju šta bi bila dimenzija ovog skupa, što pokazuje kako ona
reflektira osobine skaliranja i samo-sličnosti.

Kao što vidimo na slici, Kochova kriva (jedna strana trougla) se sastoji od četiri
kopije same sebe, skalirane faktorom 1/3, pa stoga ima dimenziju

d = − ln 4

ln 1
3

=
ln 4

ln 3
≈ 1, 262.

Generalno, skup koji se sastoji odm kopija samog sebe skaliranih faktorom r smatramo
da ima dimenziju d = − lnm/ ln r. Broj koji dobijemo na ovaj način se obično naziva
dimenzijom sličnosti skupa.

Fraktali kompleksne ravni

Iterirane funkcije u kompleksnoj ravni su ispitivane u kasnom 19om i ranom 20om
stoljeću.

Taj rad je bio djelo Henri Poincaréa, Felixa Kleina, Pierrea Fatoua i Gastona Julia-e.

Med̄utim bez pomoći kompjuterske grafike, nismo imali mogućnost vizeulizacije
ljepote mnogih objekata koji su bili otkriveni.

Mandelbrotov skup

Mandebrotov skup je skup tačaka u kompleksnoj ravni čija granica formira fraktal.
Matematički, ovaj skup se definiše kao skup kompleksnih tačaka c ∈ C, za koje orbita
nule pod iteracijama kvadratnog kompleksnog polinoma zn+1 = z2n + c ostaje ograni-
čena. Jasnije, kompleksni broj c ∈ C se nalazi u Mandebrotovom skupu ako, počevši
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od z0 = 0, |zn| pod gornjom iteracijom nikada ne prelazi odred̄eni broj, ma koliko
veliko n postalo! Broj 1 nije u Mandelbrotovom skupu. No, broj i jeste!

0, i, (−1 + i),−i,−1 + i,−i, . . .

Možemo li ovo vizuelizirati? Koristimo Mathematica-u!

Pa prije svega trebamo definisati funkciju Mandelbrot, koja vraća broj iteracija
kojih moramo proći kako bi |zn| pod gornjom iteracijom prešao odred̄enu vrijednost.

Pošto smo naravno ograničeni, neka je taj ograničavajući broj 2, a maksimalni broj
iteracija 100.

Dakle, recimo

Mandelbrot[zc_] := Module[{z = 0, i = 0},

While[i < 100&&Abs[z] < 2, z = z2 + zc; i+ +]; i];

Probajmo ovu funkciju na gornjim primjerima. Očito, od interesa su nam u stvari oni
brojevi koji su "ni tamo, ni ovamo" dakle koji dosta dugo ne divergiraju, pa onda to
učine! Recimo, broj

c = −1.2 + 0.193i

tek poslije 83 iteracije pred̄e vrijednost 2, dok već broj c = −1.2 + 0.2i poslije 18
iteracija učini isto. Ovi granični brojevi su oni koji u stvari formiraju granicu Mandel-
brotovog skupa! No kako ih prikazati?

Funkcija DensityP lot - veoma slična ContourP lot-u.

Julia skup

U kompleksnoj dinamici, Julia skup J(f) holomorfične funkcije f se informalno
sastoji od onih tačaka čije se dugoročno ponašanje pod ponovljenim iteracijama funk-
cije f može drastično promjeniti pod proizvoljno malim perturbacijama.

Veoma popularan dinamički sistem je dat sa porodicom kvadratnih polinoma, koji
su naravno poseban slučaj racionalnih preslikavanja. Kvadratni polinomi se izražavaju
kao

fc(z) = z2 + c,

gdje je c kompleksan parametar. Ovo se fundamentalno dakako razlikuje od prethod-
nog skupa i proizvodi čitav niz različitih skupova. Primjenimo sličan pristup kao ma-
loprije.

Julia skup
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Julia skup

Julia skup

Julia skup

1.2 Fraktalna dimenzija

Hausdorffova mjera i dimenzija
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Od raznih vrsta fraktalnih dimenzija, Hausdorffova dimenzija je vjerovatno najsta-
rija i ima tu prednost da se može definisati za bilo koji skup!

Ona je takod̄er matematički pogodna, jer koristi pojam mjere, sa kojima možemo
relativno lako upravljati. Za razumjevanje fraktalne dimenzije i uopće fraktalne ge-
ometrije, razumjevanje Hausdorffove dimenzije je veoma bitno.

Hausdorffova mjera

Sjetimo se da ako je U neprazan podskup n-dimenzionalnog Euklidovog prostora
Rn, dijametar skupa U definišemo kao

|U | = diam (U) = sup{|x− y| : x, y ∈ U}.

Ako je {Ui} prebrojiva ili konačna kolekcija skupova dijametra ε koji pokrivaju F , tj.

F ⊆
∞⋃
i=1

Ui,

gdje je 0 < |Ui| < ε za svako i, akžemo da je {Ui} ε-pokrivač skupaF . Pretpostavimo
da je F ⊆ Rn i da je s nenegativan broj. Za ε > 0, definišemo

Hsε(F ) = inf

{∑
i

|Ui|s : Ui je ε pokrivač od F

}
.

Pišemo da je
Hs(F ) = lim

ε→0
Hsε(F ).

Kažemo da je Hs(F ) s-dimenzionalna Hausdorffova mjera skupa F . Hausdorffova
mjera generalizira pojmove dužine, površine, zapremina, itd. Može se pokazati da je,
za podskupe Rn, n-dimenzionalna Hausdorffova mjera, do konstantnog faktora, samo
n-dimenzionalna Lebesgueova mjera, tj. n-dimenzionalna zapremina.

Stoga jeHn(F ) = cnvoln(F ), gdje je konstanta

cn =
πn/2

2nΓ(n/2 + 1)
,

gdje je Γ gama funkcija u stvari samo zapremina n-dimenzionalne lopte radijusa 1.

Gamma funkcija

Gama funkcija je ekstenzija faktorijela, tj. Γ(n) = (n − 1)!. Med̄utim, ona se

definiše pomoću konvergentnog nasvojstvenog integrala Γ(t) =

∫ ∞
0

xt−1e−xdx.
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Računajući Γ(n/2 + 1) za parno n, dobijamo Γ(n/2 + 1) = (n/2)!, tj. za parno n
imamo

Cn =
πn/2

(n/2)!
.

Za neparno n, jer je Γ(n/2 + 1) =
√
π
2 ,

3
√
π

4 , 15
√
π

8 , 105
√
π

16 , 945
√
π

32 , . . ., vidimo da je

Γ(n/2 + 1) =
n!!
√
π

2(n+1)/2
,

pa je

Cn =
(π

2

)n−1
2 1

n!!
.

Stoga imamo da jeH0(F ) samo broj tačaka u F .

H1(F ) daje dužinu glatke krive F .

H2(F ) je π/4· površina glatke površi F .

H3(F ) je π/6· zapremina glatkog solida F .

Hm(F ) = cm ·voln(F ) ako je F glatka m-dimenzionalna mnogostrukost u Rn, tj.
m-dimenzionalna površ u klasičnom smislu. Slijedeća jednakost se naziva skaliraju-
ćom osobinom Hausdorffove mjere.

Ukoliko je F ⊆ Rn i λ > 0, onda

Hs(λF ) = λsHs(F ),

gdje je λF := {λx : x ∈ F}, tj. skup F skaliran pozitivnim brojem λ.

Dokaz. Ako je {Ui} δ-pokrivač skupa F , onda je {λUi} λδ-pokrivač skupa λF . Stoga
je

Hsλδ(λF ) ≤
∑
|λUi|s = λs

∑
|Ui|s ≤ λsHsδ(F ).

jer ovo vrijedi za proizvoljan δ-pokrivač {Ui}. Ako pustimo da δ → 0, dobivamo da je

Hs(λF ) ≤ λsHs(F ).
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Ako λ zamjenimo sa 1/λ i F zamjenimo sa λF , dobivamo drugu potrebnu nejednakost.

Hausdorffova dimenzija

Hausdorffova dimenzija, koja se nekad naziva i Hausdorff–Besikovičeva dimenzija,
definiše se formalno na slijedeće način:

dimH F = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) =∞},

tako da jeHs(F ) =∞ ako je s < dimH F , aHs(F ) = 0 ako je s > dimH F .

Ovo znači da postoji kritična vrijednost s u kojoj Hs(F ) ‘skače’ sa∞ na 0 i ova
vrijednost s predstavlja Hausdorffovu dimenziju skupa F .

Osobine Hausdorffove dimenzije

1. Ako je F ⊆ Rn otvoren skup, onda je dimH F = n, jer F sadrži loptu pozitivne
n-dimenzionalne zapremine.

2. Ako je F neprekidno diferencijabilna m-dimenzionalna podmnogostrukost (tj.
m-dimenzionalna površ) od Rn,onda je dimH F = m.

3. Ako je E ⊆ F , tada je dimH E ≤ dimH F .

4. Ako je F1, F2, . . . prebrojiv niz skupova, onda je

dimH ∪∞i=1Fi = sup
1<i<∞

{dimH Fi}.

5. Ako je F prebrojiv skup, onda je dimH F = 0.

Primjer 1.1. Izračunati dimenziju Haussdorffa skupova

1. F = {0} ⊂ Rn.

2. F = [0, 1] ⊂ R.

3. F = {1/n, n ∈ N} ⊂ R.

4. F = {(x, y) ∈ R2|x ∈ [0, 1], y = 0}.

Definicija 1.2 (Cantorov skup srednjih trećina). Konstrukcija ovog skupa teče na sli-
jedeći način:
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• Neka je E0 = [0, 1]. Neka je E1 skup koji se dobije iz E0 brisanjem njegove
srednje trećine, tj. E1 = [0, 1/3] ∪ [2/3, 1].

• Neka je E2 skup koji se dobije iz E1 brisanjem njegovih srednjih trećina, tj.
E2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

• Nastavimo na ovaj način, gdje se Ek dobije iz Ek−1 brisanjem srednjih trećina
intervala koji ga čine. Ek se sastoji od 2k intervala čija je dužina 3−k.

• Cantorov skup srednjih trećina F se definiše kao skup svih brojeva koji su u Ek
za sva k ∈ N, tj.

F =

∞⋂
k=0

Ek.

• F je beskonačan skup, čak šta više, neprebrojiv skup, koji sadrži beskonačno
mnogo tačaka u susjedstvu svake svoje tačke.

• Cantorov skup se sastoji tačno od svih onih brojeva u [0, 1] čiji zapis u bazi 3 ne
sadrži cifru 1, tj. sve brojeve

a13−1 + a23−2 + a33−3 + . . . ,

gdje su a1 = 0 ili 2 za svako i.

Primjer 1.3. Ako je F Cantorov skup, dokazati da mu je dimenzija Hausdorffa ln 2
ln 3 ≈

0.6309297536.

Cantorov skup se dijeli na dva dijela, naime FL = F ∩[0, 1/3] i FD = F ∩[2/3, 1].
Očito su oba ova skupa geometrijski slični skupu F , ali skalirani faktorom 1/3 i F =
FL ∪ FD, gdje je unija disjunktna. Stoga, za bilo koje s ∈ R,

Hs(F ) = Hs(FL) +Hs(FD) =
1

3s
Hs(F ) +

1

3s
Hs(F ),
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po skalirajućem svojstvu Hausdorffove mjere.

Pod pretpostavkom da u kritičnoj vrijednosti s = dimH F imamo da je 0 < Hs(F ) <
∞ (netrivijalna pretpostavka!), možemo gornju nejednakost podijeliti sa Hs(F ) i do-
biti

1 = 2

(
1

3

)s
⇐⇒ s =

ln 2

ln 3
.

Kochova pahuljica

Kochova pahuljica se dobija na sličan način kao Cantorov skup, s tim da skup uve-
ćevamo, a ne smanjujemo. Uvjerimo se da Kochova pahuljica ima konačnu površinu.
Na početku je površina pahulice je površina jednakostraničnog trougla, tj. A1 = a2

√
3

4 .

1. Na prvom koraku dodamo 3 trokuta površine a2
√
3

4·32 , tj. imamo A2 = a2
√
3

3 .

2. Na drugom koraku dodamo 12 trokuta površine a2
√
3

4·34 , tj. imamo A3 = 10
√
3a2

27 .

3. Na trećem koraku dodamo 48 trokuta površine a2
√
3

4·36 , tj. imamo A4 = 94
√
3a2

243 .

Na n-tom koraku dodat ćemo 3 · 4n−1 trokuta površine a2
√
3

4·32n , tj. ukupna površina
je, kada pustimo n→∞

A =
a2
√

3

4
+
a2
√

3

4

∞∑
n=1

· 4
n−1

32n−1
=
a2
√

3

4

(
1 +

3

4

∞∑
n=1

(
4

9

)n)

Za geometrijski red koji smo dobili lako se pokaže da je jednak 4/5, tj.

A =
a2
√

3

4
· 8

5
=

2
√

3a2

5
.

S druge strane, ako posmatramo granicu, na početku je obim pahuljice 3.

1. Na prvom koraku, oduzmemo od obima tri puta po jednu trećinu, no dodamo tri
puta po dvije trećine.

2. Na drugom koraku, oduzmemo od obima 12 puta po jednu devetinu, no dodamo
12 puta po dvije devetine.

3. Na trećem koraku, oduzmemo od obima 48 puta po jednu dvadesetsedminu, no
dodamo 48 puta po dvije dvadesetsedmine.
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4. Na n-tom koraku, oduzmemo od obima 3 · 4n−1 puta po 1
3n , no dodamo 3 · 4n−1

puta po 2
3n , tj. dodamo 3 · 4n−1 puta po 1

3n .

Dakle, ako pustimo da n→∞, imamo da je obim

O = 3 +

∞∑
n=1

3 · 4n−1

3n
= 3 +

∞∑
n=0

(
4

3

)n
=∞.

Dimenzija Minkowskog

U prošloj sekciji, vidjeli smo da je kalkulacija Hausdorffovih mjera dosta zamoran
posao, čak i za dosta jednostave skupove. Sada smo zainteresovani za pronalaženje
definicije dimenzije koja može biti više aplikativna u izračunavanju dimenzije skupa
F .

Medjutim, nema brzih i lakih pravila za odred̄ivanje da li se neka vrijednost može
racionalno smatrati dimenzijom. Faktori koji odred̄uju prihvatljivost definicije dimen-
zije se pretežno prepoznaju pomoću iskustva i intuicije.

Ne trebamo pretpostaviti da različite definicije dimenzije daju istu vrijednost di-
menzije za sve skupove, čak i za one koji bi se mogli smatrati ‘finim’. Stoga, pojam
dimenzije se treba odvojiti od pojma definicije dimenzije!

Dimenzija Minkowskog je jedna od najšire korištenih definicija. Relativno je jed-
nostavna za izračuanti i pojam mjere se izbjegava. Ima nekoliko različitih verzija ove
definicije. Prva je

Definicija 1.4. Neka je F neprazan ograničen skup u Rn. Gornja i donja dimenzija
Minkowskog skupa F su date sa

dimMF = limε→0

lnNε(F )

− ln ε
,

dimMF = limε→0
lnNε(F )

− ln ε
,

a dimenzija Minkowskog sa

dimM F = lim
ε→0

lnNε(F )

− ln ε
,

ukoliko ovaj limes postoji, gdje je Nε(F ) jedno od slijedećih

1. Najmanji broj zatvorenih kugli radijusa ε koji pokriva F ;
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2. Najmanji broj kocki stranice ε koje pokrivaju F ;

3. Broj ε-mrežnih kocki koje presjecaju F ;

4. najmanji broj skupova dijametra najviše ε koji pokrivaju F ;

5. najveći broj disjunktnih lopti radijusa ε sa centrima u F .

Ovo je veoma korisna definicija, ali nije previše fina kada se treba doista izračunati
dimenzija Minkowskog. Med̄utim, postoji ekvivalentna definicija ove dimenzije koja
je dosta različite forme. Prije svega sjetimo se šta je to ε-okolina Fε skupa F

Fε = {x ∈ Rn : d(x, F ) < ε},

gdje je
d(x, F ) = inf

y∈F
{d(x, y)}.

Stoga je ε-susjedstvo skupa F , Fε, skup svih tačaka udaljenih od F najviše ε - nekad
se ovo naziva Minkowski kobasicom!

Lema 1.5. Ako je F ⊆ Rn, onda je

dimMF = n− limε→0
ln voln(Fε)

ln ε
,

dimMF = n− limε→0

ln voln(Fε)

ln ε
,

gdje je Fε ε-susjedstvo skupa F , a volnFε njegova n-dimenzionalna zapremina.

Postoji veoma važan odnos izmed̄u dimenzija Minkowskog i Hausdorffa. Ako F
možemo pokriti sa Nε(F ) skupova dijametra ε, iz skalirajućeg svojstva Hausdorffove
mjere, slijedi

Hsε ≤ Nε(F )εs.

ako je 1 < Hs(F ) = limε→0Hsε(F ), onda je

lnNε(F ) + s ln ε > 0,

ako je ε dovoljno malo.Stoga je

s ≤ lim
ε→0

Nε(F )

− ln ε
,

pa očito imamo
dimH F ≤ dimM ≤ dimM

Primjer 1.6. Naći dimenziju Minkowskog za slijedeće skupova:

1. F = {x ∈ R2|||x|| = 1}.

2. F = {x ∈ R2|||x|| ≤ 1}.

3. F = {1/n|n ∈ N}.
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