1 Fraktali

1.1 Uvod u fraktale

Mandelbrotov skup

U proslosti, matematika se preteZzno bavila skupovima i funkcijama na koje se pre-
teZno mogu primjeniti metode klasi¢nog diferencijalnog racuna. Skupovi funkcija koje
nisu dovoljno glatke ili regularne se se pretezno ignorirali.

Posljednih decenija ovaj se nacin razmisljanja promijenio. Shvatilo se da se veoma
mnogo moZe reéi o matematici na neglatkim skupovima.

Fraktalna geometrija daje generalni okvir unutar kojeg se izu€avaju takvi iregu-
larni skupovi. Iako realtivno Cesto Cujemo o “fraktalima”, vecina ne razumije $ta oni
predstavljaju i uopce $ta su.

Mnogi su pokuSaji napravljeni kako bi se fraktali definisali u ¢isto matemati¢kom
smislu, ali su se takve definicije Cesto ispostavile nezadovoljavaju¢im u opéem kontek-
stu.

Ipak, fraktalna geometrija daje dosta tehnika za upravljanje fraktalima.

Definicija fraktala

Receno informalno, fraktal je grub ili fragmentiran geometrijski oblik koji se mozZe
podijeliti u dijelove od kojih je svaki (barem pribliZno) umanjena kopija originala.



Ova osobina se naziva ’samo-sli¢nost’.

Rijec dolazi od latinskog fractus, $to znaci slomljen i termin je 1975. godine izmis-
lio Benoit Mandelbrot.

Matematicki fraktal je zasnovan na jednacini koja prolazi kroz iteraciju.

Definicija fraktala

Fraktal obi¢no ima slijedece osobine:

e Ima finu strukturu do proizvoljno malih skaliranja.
e PreviSe je iregularan da bi bio opisan Euclidskom geometrijom.

e Samo-sli¢nost.

Njegova Hausdorffova dimenzija je veca od topoloske dimenzije.

Ima jednostavnu rekurzivnu definiciju.

Definicija fraktala

Prirodni primjeri fraktala ukljucuju:

Oblaci;

Planinski lanci;

e Munje;

Obalni pojasevi;

Snjezne pahuljice;
e QOdredeno povrce (karfiol ili brokula)...
Historija fraktala

......

Karl Weierstrass daje primjer funkcije sa neintuitivnom osobinom da je svugdje
neprekidna, a nigdje diferencijabilna!



f(z) = i a" cos(bmx),
n=0

gdje je 0 < a < 1, b pozitivan neparan cijeli broj i

3
ab>1+§7r.

Weierstrassova funkcija

Kochova pahuljica

1904. Helge von Koch, nezadovoljan Weierstrassovom definicijom, daje mnogo
viSe geometrijski primjer fraktala.

Kochova pahuljica

Povrsina Kochove pahuljice je
2524/3
5
gdje je s duZina jedne stranice originalnog trougla. Dakle, Kochova pahuljica ima
beskonacnu granicu, a kona¢nu povrSinu! 1918 godine Bertrand Russell je priznao
’vrhunsku ljepotu’ unutar nastajue matematike fraktala.  Slijede¢i argument daje




relativno grubu interpretaciju $ta bi bila dimenzija ovog skupa, Sto pokazuje kako ona
reflektira osobine skaliranja i samo-sli¢nosti.

Kao §to vidimo na slici, Kochova kriva (jedna strana trougla) se sastoji od Cetiri
kopije same sebe, skalirane faktorom 1/3, pa stoga ima dimenziju

In4 B In4

d=—— = —
ln% In3

~ 1,262.

Generalno, skup koji se sastoji od m kopija samog sebe skaliranih faktorom r smatramo
da ima dimenziju d = — Inm/ In r. Broj koji dobijemo na ovaj nacin se obi¢no naziva
dimenzijom sli¢nosti skupa.

Fraktali kompleksne ravni

Iterirane funkcije u kompleksnoj ravni su ispitivane u kasnom 19om i ranom 20om
stoljecu.

Taj rad je bio djelo Henri Poincaréa, Felixa Kleina, Pierrea Fatoua i Gastona Julia-e.

Medutim bez pomoéi kompjuterske grafike, nismo imali moguénost vizeulizacije
ljepote mnogih objekata koji su bili otkriveni.

Mandelbrotov skup

Mandebrotov skup je skup tacaka u kompleksnoj ravni ¢ija granica formira fraktal.
Matematicki, ovaj skup se definiSe kao skup kompleksnih tacaka ¢ € C, za koje orbita
nule pod iteracijama kvadratnog kompleksnog polinoma z,,,1 = 22 + c ostaje ograni-
Cena. Jasnije, kompleksni broj ¢ € C se nalazi u Mandebrotovom skupu ako, pocevsi



od zo = 0, |z,| pod gornjom iteracijom nikada ne prelazi odredeni broj, ma koliko
veliko n postalo! Broj 1 nije u Mandelbrotovom skupu. No, broj ¢ jeste!

0,4, (—=1+1),—i,—14+14,—1,...
Mozemo li ovo vizuelizirati? Koristimo Mathematica-u!

Pa prije svega trebamo definisati funkciju Mandelbrot, koja vraca broj iteracija
kojih moramo proéi kako bi |z,,| pod gornjom iteracijom pre$ao odredenu vrijednost.

Posto smo naravno ograniceni, neka je taj ograni¢avajuci broj 2, a maksimalni broj
iteracija 100.

Dakle, recimo
Mandelbrot|zc_] :== Module[{z = 0,i = 0},

While[i < 100&& Abs[z] < 2,z = 2% + z¢;i + +]; 4];

Probajmo ovu funkciju na gornjim primjerima. OCcito, od interesa su nam u stvari oni
brojevi koji su "ni tamo, ni ovamo" dakle koji dosta dugo ne divergiraju, pa onda to
ucine! Recimo, broj

c=—-1240.193:

tek poslije 83 iteracije prede vrijednost 2, dok ve¢ broj ¢ = —1.2 4 0.2¢ poslije 18
iteracija ucini isto. Ovi grani¢ni brojevi su oni koji u stvari formiraju granicu Mandel-
brotovog skupa! No kako ih prikazati?

Funkcija DensityPlot - veoma sli¢na Contour Plot-u.

Julia skup

U kompleksnoj dinamici, Julia skup J(f) holomorfi¢ne funkcije f se informalno
sastoji od onih tacaka Cije se dugorocno ponasanje pod ponovljenim iteracijama funk-
cije f moze drasti¢no promjeniti pod proizvoljno malim perturbacijama.

Veoma popularan dinamicki sistem je dat sa porodicom kvadratnih polinoma, koji
su naravno poseban slucaj racionalnih preslikavanja. Kvadratni polinomi se izraZavaju
kao

fe(z) = 2+

gdje je ¢ kompleksan parametar. Ovo se fundamentalno dakako razlikuje od prethod-
nog skupa i proizvodi ¢itav niz razli¢itih skupova. Primjenimo slic¢an pristup kao ma-
loprije.

Julia skup



Julia skup

Julia skup

Julia skup

1.2 Fraktalna dimenzija

Hausdorffova mjera i dimenzija












Od raznih vrsta fraktalnih dimenzija, Hausdorffova dimenzija je vjerovatno najsta-
rija i ima tu prednost da se moZe definisati za bilo koji skup!

Ona je takoder matematicki pogodna, jer koristi pojam mjere, sa kojima moZemo
relativno lako upravljati. Za razumjevanje fraktalne dimenzije i uopce fraktalne ge-
ometrije, razumjevanje Hausdorffove dimenzije je veoma bitno.

Hausdorffova mjera

Sjetimo se da ako je U neprazan podskup n-dimenzionalnog Euklidovog prostora
R"™, dijametar skupa U definiSemo kao

|U| = diam (U) = sup{|z —y| : x,y € U}.

Ako je {U;} prebrojiva ili kona¢na kolekcija skupova dijametra e koji pokrivaju F, tj.
i=1

gdjeje 0 < |U;| < e za svako i, akZemo da je {U; } e-pokrivac skupa F'. Pretpostavimo
daje ' C R™ ida je s nenegativan broj. Za £ > 0, definiSemo

7

H3(F) = inf {Z \U;]® : U; je e pokrivag od F} .
Pisemo da je
H5(F) = lim H3(F).
e—0

KaZemo da je H®(F') s-dimenzionalna Hausdorffova mjera skupa F'. Hausdorffova
mjera generalizira pojmove duZine, povrSine, zapremina, itd. MoZe se pokazati da je,
za podskupe R", n-dimenzionalna Hausdorffova mjera, do konstantnog faktora, samo
n-dimenzionalna Lebesgueova mjera, tj. n-dimenzionalna zapremina.
Stoga je H™(F') = ¢, vol” (F'), gdje je konstanta
7 " /2
- 2nT(n/2+1)’

Cn

gdje je I' gama funkcija u stvari samo zapremina n-dimenzionalne lopte radijusa 1.

Gamma funkcija

Gama funkcija je ekstenzija faktorijela, tj. T'(n) = (n — 1)!. Medutim, ona se

oo
definiSe pomocu konvergentnog nasvojstvenog integrala I'(t) = / 'l dx.
0
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Racunajuéi I'(n/2 + 1) za parno n, dobijamo I'(n/2 + 1) = (n/2)!, tj. za parno n
imamo

7.l.n/2

" (n/2)

3v7 157 1057 9457 .1 .
T "1 » 33 - vidimodaje

nll\/m

o(n+1)/2°

Q

B

Za neparno n, jer je I'(n/2 + 1) = %5~,
I'(n/2+1) =

paje
n—1
s 2 1
2

Stoga imamo da je H"(F) samo broj tadaka u F.

H!(F) daje duZinu glatke krive F.
H?2(F) je m/4- povrsina glatke povrsi F.
H3(F) je m/6- zapremina glatkog solida F.

H™(F) = ¢, -vol™(F') ako je F' glatka m-dimenzionalna mnogostrukost u R", tj.
m-dimenzionalna povrs u klasicnom smislu. Slijedeca jednakost se naziva skaliraju-
¢om osobinom Hausdorffove mjere.

Ukoliko je FF C R™i A > 0, onda
H(NF) = XM (F),
gdje je \F' := {\x : € F'}, tj. skup F skaliran pozitivnim brojem A.
Dokaz. Ako je {U;} d-pokrival skupa F', onda je {\U; } Ad-pokriva¢ skupa AF. Stoga
je
H3s(AF) <D AU* = M) |U[* < MHE(F).
jer ovo vrijedi za proizvoljan J-pokrivaé {U; }. Ako pustimo da 6 — 0, dobivamo da je

HENF) < \H (F).
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Ako A zamjenimo sa 1/\ i F' zamjenimo sa AF', dobivamo drugu potrebnu nejednakost.
O

Hausdorffova dimenzija

Hausdorffova dimenzija, koja se nekad naziva i Hausdorff-Besikovi¢eva dimenzija,
definiSe se formalno na slijedece nacin:

dimyg F =inf{s: H°(F) = 0} = sup{s : H°(F) = o},
tako da je H®(F') = oo ako je s < dimpy F, a H®*(F') = 0 ako je s > dimy F.

Ovo zna¢i da postoji kriti¢na vrijednost s u kojoj H*(F') ‘skaCe’ sa oo na 0 i ova
vrijednost s predstavlja Hausdorffovu dimenziju skupa F'.

Osobine Hausdorffove dimenzije

1. Ako je F' C R" otvoren skup, onda je dimg F' = n, jer F' sadrZi loptu pozitivne
n-dimenzionalne zapremine.

2. Ako je F' neprekidno diferencijabilna m-dimenzionalna podmnogostrukost (tj.
m-dimenzionalna povrs§) od R”,onda je dimg F' = m.

3. Akoje E C F,tadaje dimy F < dimpg F.
4. Ako je Fy, Fy, ... prebrojiv niz skupova, onda je

dimy U2, F; = sup {dimpy F;}.
1<i<oo

5. Ako je F' prebrojiv skup, onda je dimg F' = 0.

Primjer 1.1. Izracunati dimenziju Haussdorffa skupova

1. F = {0} C R".

2. F=[0,1]CR

3. F={1/n,n e N} CR

4. F ={(z,y) € R?*|z € [0,1],y = 0}.

Definicija 1.2 (Cantorov skup srednjih tre¢ina). Konstrukcija ovog skupa tece na sli-
jedeci nacin:

12



1/3

1/27
—

us1
--

Primjer 1.3. Ako je F' Cantorov skup, dokazati da mu je dimenzija Hausdorffa

1/9

Neka je Ey = [0,1]. Neka je E; skup koji se dobije iz Ey brisanjem njegove
srednje treéine, tj. B = [0,1/3] U [2/3,1].

Neka je F5 skup koji se dobije iz F4 brisanjem njegovih srednjih trecina, tj.
By =[0,1/9] U [2/9,1/3] U[2/3,7/9] U [8/9,1].

Nastavimo na ovaj nacin, gdje se F dobije iz E',_; brisanjem srednjih tre¢ina
intervala koji ga ¢ine. E}, se sastoji od 2¥ intervala &ija je duzina 37*.

Cantorov skup srednjih tre¢ina F' se definiSe kao skup svih brojeva koji su u Ej,
zasvak € N, tj.

o0
F = () E.
k=0
F' je beskonacan skup, Cak $ta viSe, neprebrojiv skup, koji sadrZi beskonac¢no
mnogo tacaka u susjedstvu svake svoje tacke.

Cantorov skup se sastoji tacno od svih onih brojeva u [0, 1] &iji zapis u bazi 3 ne
sadrZi cifru 1, tj. sve brojeve

a13_1 + a23_2 + a33_3 + ...,

gdje su a; = 01li 2 za svako .

In2
In3 ™~

0.6309297536.

Cantorov skup se dijeli na dva dijela, naime Fy, = FN[0,1/3]i Fp = FN[2/3,1].
OCcito su oba ova skupa geometrijski slicni skupu F, ali skalirani faktorom 1/3 i F' =
Fr U Fp, gdje je unija disjunktna. Stoga, za bilo koje s € R,

HI(F) = H'(FL) + H*(F) = S H'(F) + - H(F),

13



po skalirajucem svojstvu Hausdorffove mjere.

Pod pretpostavkom da u kriti¢noj vrijednosti s = dimy F imamo daje 0 < H*(F) <
oo (netrivijalna pretpostavka!), moZzemo gornju nejednakost podijeliti sa H*(F') i do-

biti
1o (1) o2
—°\3 T g

Kochova pahuljica

Kochova pahuljica se dobija na slican nacin kao Cantorov skup, s tim da skup uve-
¢evamo, a ne smanjujemo. Uvjerimo se da Kochova pahuljica ima konacnu povrsinu.

Na pocetku je povrsina pahulice je povrSina jednakostrani¢nog trougla, tj. A; = %.

2 2
1. Na prvom koraku dodamo 3 trokuta povrSine “4&/2“5’, tj. imamo Ay = ¢ g/g .

2. Na drugom koraku dodamo 12 trokuta povrSine “Z ?‘)/45, tj. imamo A3z = %.

. 2 .. 2
3. Na tre¢em koraku dodamo 48 trokuta povrSine a4‘3‘)/6§, tj. imamo A, = %.

. 2 . v
Na n-tom koraku dodat éemo 3 - 4"~ ! trokuta povrsine T 3*2/5, tj. ukupna povrsina
je, kada pustimo n — oo

az\/?: a2\/§oo gn—1 a?v/3 3= /4\"
A==+ Z's?n—l_ 4 1+4Z<9)

n=1 n=1

Za geometrijski red koji smo dobili lako se pokaZe da je jednak 4/5, tj.

- a’\V/3 §7 2+/3a2

A
4 5 )

S druge strane, ako posmatramo granicu, na pocetku je obim pahuljice 3.
1. Na prvom koraku, oduzmemo od obima tri puta po jednu treéinu, no dodamo tri
puta po dvije trecine.

2. Na drugom koraku, oduzmemo od obima 12 puta po jednu devetinu, no dodamo
12 puta po dvije devetine.

3. Na treem koraku, oduzmemo od obima 48 puta po jednu dvadesetsedminu, no
dodamo 48 puta po dvije dvadesetsedmine.
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4. Na n-tom koraku, oduzmemo od obima 3 - 4"} puta po 3%, no dodamo 3 - 471

puta po ==, tj. dodamo 3 - 4"~! puta po 7.

Dakle, ako pustimo da n — oo, imamo da je obim

0:3+Z3'§:71 :3+Z<§>n:oo.
n=1 n=0

Dimenzija Minkowskog

U prosloj sekciji, vidjeli smo da je kalkulacija Hausdorffovih mjera dosta zamoran
posao, ¢ak i za dosta jednostave skupove. Sada smo zainteresovani za pronalaZenje
definicije dimenzije koja moZe biti viSe aplikativna u izracunavanju dimenzije skupa
F.

Medjutim, nema brzih i lakih pravila za odredivanje da li se neka vrijednost moZe
racionalno smatrati dimenzijom. Faktori koji odreduju prihvatljivost definicije dimen-
zije se pretezno prepoznaju pomocu iskustva i intuicije.

Ne trebamo pretpostaviti da razli¢ite definicije dimenzije daju istu vrijednost di-
menzije za sve skupove, Cak i za one koji bi se mogli smatrati ‘finim’. Stoga, pojam
dimenzije se treba odvojiti od pojma definicije dimenzije!

Dimenzija Minkowskog je jedna od najSire koriStenih definicija. Relativno je jed-
nostavna za izrauanti i pojam mjere se izbjegava. Ima nekoliko razli¢itih verzija ove
definicije. Prva je

Definicija 1.4. Neka je F neprazan ograni¢en skup u R*. Gornja i donja dimenzija
Minkowskog skupa F' su date sa

) ) In N.(F)
dlm]MF = hmZ*)OTEng’
— InN.(F
Dy F = Tim, o )
—Ine
a dimenzija Minkowskog sa
In N.(F
dimy; F = lim nig(),
e—=0 —lIne

ukoliko ovaj limes postoji, gdje je N.(F’) jedno od slijedecih

1. Najmanji broj zatvorenih kugli radijusa ¢ koji pokriva F';
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Najmanji broj kocki stranice € koje pokrivaju F;
Broj e-mreznih kocki koje presjecaju F';

najmanji broj skupova dijametra najviSe € koji pokrivaju F';

wook v

najveci broj disjunktnih lopti radijusa ¢ sa centrima u F'.

Ovo je veoma korisna definicija, ali nije previSe fina kada se treba doista izracunati
dimenzija Minkowskog. Medutim, postoji ekvivalentna definicija ove dimenzije koja
je dosta razlicite forme. Prije svega sjetimo se Sta je to e-okolina F; skupa F'

F.={zeR":d(z,F) < e},
gdje je
d(xz, F) = inf {d(x,y)}.
yel

Stoga je e-susjedstvo skupa F', F,, skup svih tacaka udaljenih od F' najvise ¢ - nekad
se ovo naziva Minkowski kobasicom!

Lema 1.5. Ako je F C R", onda je

. — ln vol™(Fy)
d F=n-1 _—

im,, n — lim._,q e ,
— ) Invol™(F;)
dlm]\/[F =n — hm6_>0T€,

gdje je F e-susjedstvo skupa F', a vol™ F, njegova n-dimenzionalna zapremina.

Postoji veoma vazan odnos izmedu dimenzija Minkowskog i Hausdorffa. Ako F'
mozemo pokriti sa N, (F') skupova dijametra ¢, iz skalirajuéeg svojstva Hausdorffove
mjere, slijedi

H: < N(F)e°.

ako je 1 < H5(F) = limg_,o HE(F), onda je
In N.(F) + slne > 0,

ako je € dovoljno malo.Stoga je

N.(F
sglimy

e=0 —Ine’

pa ocito imamo
dimpy F < dim,;, < dimys

Primjer 1.6. Naci dimenziju Minkowskog za slijedece skupova:
1. F={reR?|z|| =1}.
2. F={zeR?|z|]| < 1}.
3. F={1/n|n € N}.
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